专业字典>历史百科>四库百科>椭圆拾遗

椭圆拾遗

三卷。清李善兰(详见《方圆阐幽》)撰。这是一部研究椭圆及其相关问题的专著,是李善兰在吸收西方数学知识基础上,独立获得的关于椭圆性质、作图等方面一系列成果的反映。全书三卷共四十四款,卷一共二十款,李善兰独立提出并证明了二十个命题。命题一、二是椭圆基本定理:椭圆与辅圆对应弦之比,等于椭圆长短轴之比。对此李善兰给出了独特的证明,他利用投影的概念,讨论了椭圆与大、小辅圆的关系:“盖平圆侧视之即成椭圆,平圆诸正弦恒为弦,侧视所成椭圆诸正弦恒为勾,成无数等势勾股形,故比例恒同也。”“盖椭圆从长径端侧视之,长径必稍短,渐侧渐短与短径等,即成平圆矣,椭圆诸正弦恒为弦,侧视所成平圆诸正弦恒为勾,成无数等势勾股形,故比例恒同也。”命题三是:“凡椭圆斜交斜径之正弦与斜径上平圆之正弦比恒如半属径与半斜径比。”李善兰运用了平行投影的方法证明了这一命题:“试置椭圆柱自短径端斜截之,令成平圆面,复自长径端斜截之,仍为椭圆面,令二面之交线过柱心,则交线即斜径,二面正弦与圆柱周诸直线成无数等势三角形,故比例恒同也。”这是李善兰独立提出的一条新的定理,椭圆基本定理仅是它特例,其证明方法颇为独特,前所未闻。以后的几个命题均是由此推出的新结果。命题四证明椭圆与辅圆的面积关系为:椭圆面积∶大辅圆面积=椭圆短半轴∶椭圆长半轴=椭圆外切长方形面积∶辅圆外切正方形面积;椭圆面积∶小辅圆面积=椭圆长半轴∶椭圆短半轴=椭圆外切长方形面积∶辅圆外切正方形面积。命题五对此作了推广:“椭圆与斜径上平圆比,如属径股与斜径比。”命题6证明:“凡椭圆与长径上平圆二圆内所有三角形及诸边形若同用一底,在长径内切圆周诸角具在一个垂线内,则其面积之比恒如短径与长径比”。命题七为命题六的推广:“凡椭圆及斜径上平圆二圆内所有三角及诸边形若同用一底,在斜径内切圆周诸角作线,一与属径平行,一正交斜径,俱遇于斜径内一点,则其面积之比恒如属径股与斜径比。”命题八证明了“椭圆正交长径之正弦与长径上平圆正弦比,如短径上平圆余弦与椭圆余弦比。”命题九对此作了推广。值得注意的是命题十二,它讨论了椭圆规的原理,这在国内尚属首次:“任自椭圆周一点作线至长径上,令等于小半径,则引长之至短径,必等于大半径。”李善兰明确指出:“用十字槽作椭圆周即此款之理也。”命题十三以后各题是与椭圆有关的比例及计算问题,这对于解决轨道计算和某些作图问题有一定价值。如命题十三:“大小二径较比如大小二矢比”,命题十四:“径较与矢比恒如倍两心差与长径比”。《椭圆拾遗》卷二共九款,讨论了九个求焦点位置的问题。这些均为已知椭圆的一个焦点及其它一些条件,用作图法求另一个焦点。解此类题均需综合应用椭圆及其切线的性质及作图知识,具有较高的技巧性。如命题二十三:“有一心,有椭圆二点,其一点并知切线,求余一心”;命题二十五:“有一心,有最卑点,有椭圆一切线不知切点,求余一心。”命题二十七:“有一心,有椭圆三切线,俱不知切点,求余一心。”对这些题李善兰不仅给出了具体作法,并证明了作法正确性。这类命题由李善兰独立提出并加以研究,他的工作在国内是首创性的。《椭圆拾遗》卷三主要讨论与椭圆轨道计算有关的一些问题,李善兰用微积分和无穷级数加以解决。卷三共十五款,如命题三十三:“距心线之级数为借积度求平引面积之微分”;命题三十四:“有距心线级数,求平引面积”;命题三十八:“有最卑后实引度求距心线之级数。”在解这些问题时,李善兰不仅纯熟地运用微积分知识,并且探讨了级数展开式的系数变化规律,他用一个垛积图说明“诸系数递增之理”,相当于给出了幂级数展开式。李善兰在未曾得知西方同类成果的情况下,结合几何、三角、微积分和无穷级数等知识独立研究了有关椭圆运动级数展开方面的课题,并获得了独创性的成果,对中算发展产生一定的影响。《椭圆拾遗》收入了1867年出版的《则古昔斋算学》中。其版本有:1867年金陵刊本六册,现藏北京图书馆与苏州图书馆;1868年刊本;1882年江宁藩署刊本;同文馆聚珍本;积山书局石印本与大同书局石印本。

猜你喜欢

  • 焦南浦年谱

    一卷。清焦以敬(1685-?)、焦以恕(1697-?)编。以敬字星持,雍正十一年(1733年)进士,选庶吉士。以恕字心如,廪生,二人俱谱主之子。谱主焦袁熹(1661-1736),字广期,自号南浦,江苏

  • 大学顺议

    一卷。清丛秉肃(生卒年未详)撰。秉肃字恭作,山东文登人。穷居授徒,以终其身。是书一遵朱子章句,循文敷衍,不参他说,也别无申发阐明,为学子治帖括计。但是书贯穿融会,便于儿童启蒙诵读学习。卷首有张井、李湘

  • 周礼故书疏证

    六卷。清宋世荦撰。世荦字卣勋,号确山,临海(今浙江临海)人,乾隆五十三年(1788)举人,曾任知县。是书于郑(玄)注略例不甚明了,疏证异字亦不周密,但也颇有高明之处。如:“《乐师》故书‘燕’为‘舞’、

  • 山林清气集

    一卷。《续集》一卷。元释德净撰。德净字如镜。生卒年未详。,钱塘(今浙江杭州)人。泰定天历间曾与仇远、冯子振,白珽诸人游。其诗皆五七言律体。续集共诗七十六首,而咏物者达五十三首。格调皆浅弱。末有附集一卷

  • 明辨类函

    一名《詹氏小辨》,六十四卷。明詹景凤(详见《画苑补益》条)撰。《明史·艺文志》和黄虞稷《千顷堂书目》均题为《詹氏小辨》。而世所传崇祯五年(1632年)刊本,实为《明辨类函》,盖以后又改名者。此书六十四

  • 临朐县志书

    四卷。清屠寿徵修,尹所遴纂。屠寿徵,康熙十一年(1672)任临朐知县。尹所遴,邑人,贡生出身。屠寿徵宰临朐,即奉普修全国郡邑地志之檄,纂修邑乘,明嘉靖三十一年(1552)王家士志距当时已近百年,时移势

  • 鸣道集说

    一卷。金李纯甫(1185-约1231,一说1177-1223)撰。李纯甫字之纯,自号屏山居士,弘州襄阴(今河北阳原)人。承安二年(1197)经义进士。前后三入翰林,仕至尚书右司都事。李纯甫初业词赋,后

  • 礼记义证

    一卷。后魏刘芳(详见《毛诗笺诗义证》条)辑。清马国翰撰。马辑本只六条,有得有失。其有,“云卜赴也,赴来者之心”。此为得也。赴从卜声。《诗·大田》“秉畀炎火”,《释文》“秉”,“《韩诗》作卜,卜报也”。

  • 西游原旨

    见《西游记》。

  • 太白阴经

    八卷。唐李筌撰。李筌,两《唐书》无传,其籍贯、生卒年月皆不详。惟宋贾善翔《集仙传》称其曾仕至荆南节度副使、仙州刺史,约为唐玄宗至唐代宗(713-779)时人。又《神仙感遇传》曰“筌有将略,作《太白阴符